The Foreign Body Giant Cell From an osteoclast perspective
نویسنده
چکیده
Foreign body multinucleated giant cells (FBGCs) and osteoclasts share several characteristics, like a common myeloid precursor cell, multinuclearity, expression of tartrate-resistant acid phosphatase (TRAcP) and dendritic cell-specific transmembrane protein (DC-STAMP). However, there is an important difference: osteoclasts form and reside in the vicinity of bone, while FBGCs form only under pathological conditions or at the surface of foreign materials, like medical implants. Despite similarities, an important distinction between these cell types is that osteoclasts can resorb bone, but it is unknown whether FBGCs are capable of such an activity. To investigate this, we differentiated FBGCs and osteoclasts in vitro from their common CD14+ monocyte precursor cells, using different sets of cytokines. Both cell types were cultured on bovine bone slices and analyzed for typical osteoclast features, such as bone resorption, presence of actin rings, formation of a ruffled border, and characteristic gene expression over time. Additionally, both cell types were cultured on a biomimetic hydroxyapatite coating to discriminate between bone resorption and mineral dissolution independent of organic matrix proteolysis. Both cell types differentiated into multinucleated cells on bone, but FBGCs were larger and had a higher number of nuclei compared to osteoclasts. FBGCs were not able to resorb bone, yet they were able to dissolve the mineral fraction of bone at the surface. Remarkably, FBGCs also expressed actin rings, podosome belts and sealing zones – cytoskeletal organization that is considered to be osteoclast-specific. However, they did not form a ruffled border. At the gene expression level, FBGCs and osteoclasts expressed similar levels of mRNAs that are associated with the dissolution of mineral (e.g., anion exchange protein 2 (AE2), carbonic anhydrase 2 (CAII), chloride channel 7 (CIC7), and vacuolar-type H+-ATPase (v-ATPase)), in contrast the matrix degrading enzyme cathepsin K, which was hardly expressed by FBGCs. Functionally, the latter cells were able to dissolve a biomimetic hydroxyapatite coating in vitro, which was blocked by inhibiting v-ATPase enzyme activity. These results show that FBGCs have the capacity to dissolve the mineral phase of bone, similar to osteoclasts. However, they are not able to digest the matrix fraction of bone, likely due to the lack of a ruffled border and cathepsin K. C H A P T E R 2
منابع مشابه
DC-STAMP is essential for cell–cell fusion in osteoclasts and foreign body giant cells
Osteoclasts are bone-resorbing cells that play a pivotal role in bone remodeling. Osteoclasts form large multinuclear giant cells by fusion of mononuclear osteoclasts. How cell fusion is mediated, however, is unclear. We identify the dendritic cell-specific transmembrane protein (DC-STAMP), a putative seven-transmembrane protein, by a DNA subtraction screen between multinuclear osteoclasts and ...
متن کاملRegulation of Osteoclast Differentiation (Identification of osteoclast and macrophage fusion protein; DC-STAMP)
Osteoclasts are bone-resorbing multinuclear cells derived from hematopoietic stem cells or monocyte/ macrophage lineage cells. Recent identification of RANK/RANKL has provided new insights into the osteoclast differentiation pathway, enabling us to generate osteoclasts without stromal cells, which support osteoclastogenesis. In order to establish a pure osteoclast culture system, we identified ...
متن کاملRegulators of osteoclast differentiation and cell-cell fusion.
Osteoclasts are multinuclear giant cells derived from osteoclast/macrophage/dendritic cell common progenitor cells. The most characteristic feature of osteoclasts is multinucleation resulting from cell-cell fusion of mononuclear osteoclasts. Osteoclast cell-cell fusion is considered essential for re-organization of the cytoskeleton, such as the actin-ring and ruffled boa...
متن کاملSTATs and macrophage fusion
Macrophages play a pivotal role in host defense against multiple foreign materials such as bacteria, parasites and artificial devices. Some macrophage lineage cells, namely osteoclasts and foreign body giant cells (FBGCs), form multi-nuclear giant cells by the cell-cell fusion of mono-nuclear cells. Osteoclasts are bone-resorbing cells, and are formed in the presence of RANKL on the surface of ...
متن کاملThe tec family tyrosine kinase Btk Regulates RANKL-induced osteoclast maturation.
A spontaneous mutation in Bruton's tyrosine kinase (Btk) induces a defect in B-cell development that results in the immunodeficiency diseases X-linked agammaglobulinemia in humans and X-linked immunodeficiency (Xid) in mice. Here we show an unexpected role of Btk in osteoclast formation. When bone marrow cells derived from Xid mice were stimulated with receptor activator of NF-kappaB ligand, an...
متن کاملCCL2 and CCR2 are Essential for the Formation of Osteoclasts and Foreign Body Giant Cells.
Osteoclasts are multinucleated cells responsible for bone resorption. They are derived from the fusion of cells in the monocyte/macrophage lineage. Monocytes and macrophages can also fuse to form foreign body giant cells (FBGC). Foreign body giant cells are observed at the interface between a host and a foreign body such as implants during a foreign body reaction. Macrophages are attracted to t...
متن کامل